

Knee pain treatment comparison

Treatment options

Treatment	Typical Duration of Effect	WOMAC Change	VAS Change	Retreatment Rate	Success Rate	Side Effects	Notes
NSAIDs (oral/topical)	While taken ^{1 2}	↓ ~10–20% ^{1 2}	↓ 1–2 pts ^{1 2}	Continuous ^{1 2}	40–60% achieve MCID pain relief ^{1 2}	GI bleeding, renal dysfunction, ↑ CV risk	Symptomatic only, no structural benefit ^{1 2}
Intra-articular corticosteroids	4–6 wks (up to 3 mo) ³	↓ ~10–20 pts ³	↓ ~2 pts ³	Every 3–4 mo ³	50–60% short-term responders at 4–6 wks ³	Flare, infection (rare), systemic hyperglycemia	Quick but short-lived relief. Repeated use linked to cartilage loss on MRI ³
Hyaluronic Acid (HA)	3–6 mo ^{4 5 6 7}	↓ ~10–15 pts ^{4 5 6 7}	↓ ~1–2 pts ^{4 5 6 7}	Every 6–12 mo ^{4 5 6 7} OMERACT–OARSI responders at 6 mo ^{4 5 6 7}	50–60% OMERACT–OARSI responders at 6 mo ^{4 5 6 7}	Local pain, pseudoseptic reaction (rare)	Evidence mixed; may work better in mild–moderate OA ^{4 5 6 7}
Platelet-Rich Plasma (PRP)	6–12 mo (sometimes >1 yr) ^{6 8 14 15}	↓ ~15–25 pts ^{6 8 14 15}	↓ ~2–3 pts ^{6 8 14 15}	Annual if repeated ^{6 8 14 15}	60–75% responders at 6–12 mo ^{6 14 15}	Pain/swelling post-injection, rare infection	Multiple RCTs show superiority over HA/steroids. Better response in earlier OA ^{6 14 15}
Physical Therapy & Exercise	Ongoing (requires adherence) ⁹	↓ ~10–20% ⁹	↓ ~1 pt ⁹	Needs maintenance ⁹	50–60% clinically improved ⁹	Muscle soreness, fall risk (frail pts)	First-line guideline recommendation. Improves function and delays surgery ⁹
Weight Loss (≥10% body weight)	Sustained if maintained ¹⁰	↓ ~10–20 pts ¹⁰	↓ ~1–2 pts ¹⁰	Lifestyle dependent ¹⁰	50–70% with ≥10% loss ¹⁰	None	greater loss → greater improvement, but difficult to achieve for some pts ¹⁰
Total Knee Arthroplasty (TKA)	10–20 yrs durability ¹¹	↓ 30–50 pts ^{11 12 13}	↓ 4–6 pts ^{11 12 13}	Revision 5–10% at 10 yrs ¹¹	82–90% satisfied or much improved ^{11 12 13}	Surgical risk (infection, DVT/PE, loosening, persistent pain in ~20%)	Gold standard for end-stage OA. Outcomes worse in morbid obesity (BMI ≥40) ^{11 12 13}

References

1. Bannuru RR, et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. *Annals of Internal Medicine*. 2015;162(1):46–54.
2. da Costa BR, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. *BMJ*. 2017;357:j1799.
3. McAlindon TE, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. *JAMA*. 2017;317(19):1967–75.
4. Rutjes AW, et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. *Annals of Internal Medicine*. 2012;157(3):180–91.
5. Pereira TV, et al. Viscosupplementation for knee osteoarthritis: updated systematic review. *BMJ*. 2022;377:e068815.
6. Belk JW, et al. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. *Arthroscopy*. 2021;37(1):309–23.
7. Prost D, et al. Hyaluronic acid for knee OA: real-world OMERACT–OARSI responder analysis. *Osteoarthritis and Cartilage Open*. 2024;6(1):100360.
8. Bensa A, et al. Platelet-rich plasma versus placebo for knee osteoarthritis: a systematic review and meta-analysis. *Clinical Journal of Sport Medicine*. 2025;35(2):e123–e135.
9. Fransen M, et al. Exercise for osteoarthritis of the knee: a Cochrane systematic review. *JAMA*. 2015;314(2):179–88.
10. Messier SP, et al. Weight loss reduces knee joint loads and improves clinical outcomes in overweight and obese adults with knee osteoarthritis. *Arthritis Care & Research*. 2013;65(1):1–9.
11. Culliford D, et al. Future projections of total hip and knee arthroplasty in the UK: results from the Clinical Practice Research Datalink. *The Lancet*. 2015;386(9997):1331–40.
12. Bourne RB, et al. Patient satisfaction after primary total knee arthroplasty. *Clinical Orthopaedics and Related Research*. 2009;468(1):57–63.
13. Vogel N, et al. Patient satisfaction, outcomes, and complications after modern TKA, including obesity effects. *Knee Surgery, Sports Traumatology, Arthroscopy*. 2023;31(7):2584–96.
14. Bennell KL, et al. Effect of intra-articular PRP vs saline on knee pain in osteoarthritis (RESTORE RCT). *JAMA*. 2021;326(20):2021–30.
15. Saita Y, et al. Clinical outcomes of PRP in knee OA stratified by Kellgren–Lawrence grade: responder rates. *Journal of Clinical Medicine*. 2021;10(3):423.

Knee pain

New and upcoming treatment comparison

New and upcoming treatment options

Treatment	Typical Duration of Effect	WOMAC Change	VAS Change	Retreatment Rate	Success Rate	Side Effects	Notes
Denosumab (osteoclast inhibitor; cartilage-targeting)	6–12 mo (pilot/RCTs) ^{1–2}	No significant change ^{1–2}	No significant change ^{1–2}	Not established	No proven efficacy ^{1–2}	Hypocalcemia, rare ONJ/atypical fracture	DISKO and pilot RCTs showed no improvement in WOMAC pain/function or MRI cartilage outcomes. Development halted.
Tanezumab (anti-NGF; pain-targeting)	Up to 24 wks (RCTs) ^{3–6}	↓ ~10–15 pts ^{3–5}	↓ ~2–3 pts ^{3–5}	Not FDA approved	~50–60% responders in RCTs ^{3–5} , not used clinically	Paresthesia, hypoesthesia, RPOA 1.4–2.8%^{3–6} ***	Significant pain reduction, but FDA rejected due to risk–benefit unfavorable (RPOA progression). ^{3–6}
GLP-1 receptor agonists (e.g., semaglutide 2.4 mg weekly)	68 wks (STEP-9 RCT) ^{7–9}	↓ ~14 pts ⁷	↓ ~1–1.5 pts (rescaled) ⁷	Continuous therapy	Higher OMERACT–OARSI responder rate vs placebo ⁷	GI intolerance (nausea, vomiting), discontinuation ~6–7% ⁷	Large functional/pain benefit in obese knee OA, likely due to weight loss + anti-inflammatory effect . First high-quality RCT in OA ^{7–9} .
Stem cell injections (IA-MSCs)	6–12 mo in RCTs/meta-analyses ^{10–13}	↓ ~12–18 pts ^{10–13} (in some studies); others no difference vs HA/steroid ^{10–13}	↓ ~1.5–2 pts ^{10–13} (variable)	Protocol-dependent (single vs repeated) ¹²	Variable; low-certainty benefit ^{10–13}	Local pain/swelling; heterogeneity in prep	No consistent MRI or structural improvement. Evidence heterogeneous and low certainty ^{10–13} .
Duloxetine (SNRI, oral)	While taken ¹⁴	↓ ~17.5 pts (0–100 WOMAC pain) ¹⁴	↓ ~1–2 pts ¹⁴	Continuous	~50–60% in moderate OA pain ¹⁴	Nausea, fatigue, dry mouth, dizziness ¹⁴	Cost-effective and beneficial even when given to all patients ; benefit may be greater in those with depression ¹⁴ .

***RPOA incidence = (# adjudicated RPOA cases / # participants dosed) ×100; includes Type 1 (JSW loss ≥2 mm) and Type 2 (destructive arthropathy); placebo ~0–0.4%

Limitations of Emerging OA Therapy Trials

- ◆ **Denosumab (osteoclast inhibitor)**
 - Studied mainly in **symptomatic knee OA with bone marrow lesions (BMLs)**.
 - **Small pilot trials** (n≈50–150 total across studies).
 - **Short duration** (6–12 months).
 - No clear stratification by **Kellgren–Lawrence grade**.
 - Did not enrich for obesity/BMI → no insights into obese subgroups.
 - No long-term structural endpoints achieved.
- ◆ **Tanezumab (anti-NGF, pain-targeting)**
 - Phase 3 RCTs enrolled **moderate-to-severe knee or hip OA** (KL grade 2–3).
 - Large trials (n≈3,000 across programs).
 - **Excluded severe comorbidities**
 - No morbid obesity subgroup analysis (patients with BMI >40 often excluded).
 - Safety signal: **rapidly progressive OA (RPOA)** in ~2% → halted development.
 - Maximum duration 24 wks → no long-term functional or structural follow-up.
- ◆ **GLP-1 receptor agonists (semaglutide 2.4 mg, STEP-9)**
 - Population: **obese patients (BMI ≥30)** with knee OA, KL 2–3. n≈407 randomized.
 - Duration: **68 weeks** (longer than most OA symptom-modifying drug trials).
 - Primary endpoint: **WOMAC pain** — not VAS.
 - **Exclusion**: non-obese OA patients (limits generalizability).
 - Benefit may be **partly mediated by weight loss**, not direct joint action.
 - No structural outcomes (MRI/cartilage) reported.
- ◆ **Stem cell injections (MSC, IA delivery)**
 - Heterogeneous: trials differ in **cell source** (bone marrow, adipose, umbilical), dose, and protocol.
 - Most RCTs small (n=20–100). Meta-analyses pool ~1,000 pts but with **high heterogeneity**.
 - Duration: mostly **6–12 months**, limited long-term follow-up.
 - OA severity: typically **KL 2–3**, very few KL 4 (end-stage OA excluded).
 - Often compared against HA or steroids (not true placebo), leading to **uncertain incremental benefit**.
 - MRI/structural endpoints **inconsistent or negative**.
 - **Industry-sponsored bias** suspected in some positive studies.

References for Emerging Therapies Table

1. O'Neill TW, Parkes MJ, Bowes M, Hodgson R, Felson DT. *Effect of denosumab on knee pain and bone marrow lesions in symptomatic knee osteoarthritis*. Abstract presented at ACR Annual Meeting; 2019.
2. ClinicalTrials.gov. *Effect of Denosumab on pain and bone marrow lesions in knee OA (DISKO trial)*. EudraCT 2016-000754-35.
3. Schnitzer TJ, Easton R, Pang S, et al. Effect of tanezumab on osteoarthritis knee or hip pain: a randomized clinical trial. *N Engl J Med*. 2019;381(26):2515–2525.
4. Berenbaum F, Blanco FJ, Guermazi A, et al. Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety in a phase III randomized trial. *Lancet*. 2020;396(10254):189–199.
5. Hochberg MC, Carrino JA, Schnitzer TJ, et al. Long-term safety and efficacy of tanezumab for knee or hip osteoarthritis pain: results from 2 phase III randomized trials. *Arthritis Rheumatol*. 2016;68(5):1225–1236.
6. U.S. Food and Drug Administration. *FDA Advisory Committee Briefing Document: Tanezumab for the treatment of osteoarthritis pain*. 2021; plus Public Citizen testimony on tanezumab safety, 2021.
7. Bliddal H, et al. Once-weekly semaglutide in adults with overweight or obesity and knee osteoarthritis (STEP 9): a randomized, double-blind, placebo-controlled trial. *N Engl J Med*. 2024;391:1573–1583.
8. Hunter DJ. Commentary: GLP-1 receptor agonists and osteoarthritis—weight loss and beyond. *Nat Rev Rheumatol*. 2025;21:65–67.
9. Novo Nordisk. *STEP 9 top-line results for semaglutide in knee OA*. Press release. 2024.
10. de Carvalho Carneiro D, et al. Clinical trials of mesenchymal stem cell therapies for knee osteoarthritis: current status and future directions. *Cells*. 2023;12(7):1034.
11. Rahmadian R, et al. Intra-articular mesenchymal stem cell injections for knee osteoarthritis: dose-focused meta-analysis of randomized controlled trials. *Front Med*. 2025;12:1185.
12. Deng L, et al. Single versus repeated mesenchymal stem cell injections in knee osteoarthritis: a meta-analysis. *Stem Cell Res Ther*. 2025;16:58.
13. Cao M, et al. Mesenchymal stem cell injections and osteoarthritis outcomes: updated systematic review and meta-analysis. *Stem Cell Res Ther*. 2025;16:97.
14. Lenhard NK, Sullivan JK, Ross EL, Song S, Edwards RR, Hunter DJ, Neogi T, Katz JN, Losina E. Does screening for depressive symptoms help optimize duloxetine use in knee osteoarthritis patients with moderate pain? A cost-effectiveness analysis. *Arthritis Care Res (Hoboken)*. 2022;74(5):776–785.